Generalized Morrey Spaces for Non-doubling Measures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morrey spaces for non-doubling measures

We give a natural definition of the Morrey spaces for Radon measures which may be non-doubling but satisfy the growth condition. In these spaces we investigate the behavior of the maximal operator, the fractional integral operator, the singular integral operator and their vector-valued extensions.

متن کامل

Some Multi-sublinear Operators on Generalized Morrey Spaces with Non-doubling Measures

In this paper the boundedness for a large class of multisublinear operators is established on product generalized Morrey spaces with non-doubling measures. As special cases, the corresponding results for multilinear Calderón-Zygmund operators, multilinear fractional integrals and multi-sublinear maximal operators will be obtained.

متن کامل

Equivalent norms for the ( vector - valued ) Morrey spaces with non - doubling measures

In this paper under some growth condition we investigate the connection between RBMO and the Morrey spaces. We do not assume the doubling condition which has been a key property of harmonic analysis. We also obtain another type of equivalent norms.

متن کامل

Vector - valued sharp maximal inequality on the Morrey spaces with non - doubling measures

In this paper we consider the vector-valued extension of the Fefferman-Stein-Stronberg sharp maximal inequality under growth condition. As an application we obtain the vectorvalued extension of the boundedness of the commutator. Furthermore we prove the boundedness of the commutator.

متن کامل

Multilinear Riesz Potential on Morrey-Herz Spaces with Non-Doubling Measures

The authors consider the multilinear Riesz potential operator defined by Iα,m − → f x ∫ Rd m f1 y1 f2 y2 · · · fm ym /| x−y1, . . . , x−ym |mn−α dμ y1 · · ·dμ ym , where − → f denotes themtuple f1, f2, . . . , fm , m,n the nonnegative integers with n ≥ 2, m ≥ 1, 0 < α < mn, and μ is a nonnegative n-dimensional Borel measure. In this paper, the boundedness for the operator Iα,m on the product of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA

سال: 2008

ISSN: 1021-9722,1420-9004

DOI: 10.1007/s00030-008-6032-5